14,581 research outputs found

    Multiple muons in MACRO

    Get PDF
    An analysis of the multiple muon events in the Monopole Astrophysics and Cosmic Ray Observatory detector was conducted to determine the cosmic ray composition. Particular emphasis is placed on the interesting primary cosmic ray energy region above 2000 TeV/nucleus. An extensive study of muon production in cosmic ray showers has been done. Results were used to parameterize the characteristics of muon penetration into the Earth to the location of a detector

    The degenerate C. Neumann system I: symmetry reduction and convexity

    Full text link
    The C. Neumann system describes a particle on the sphere S^n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has l+1 distinct eigenvalues with multiplicity. Each group of m_\sigma equal eigenvalues gives rise to an O(m_\sigma)-symmetry in configuration space. The combined symmetry group G is a direct product of l+1 such factors, and its cotangent lift has an Ad^*-equivariant Momentum mapping. Regular reduction leads to the Rosochatius system on S^l, which has the same form as the Neumann system albeit for an additional effective potential. To understand how the reduced systems fit together we use singular reduction to construct an embedding of the reduced Poisson space T^*{S^n}/G into R^{3l+3}$. The global geometry is described, in particular the bundle structure that appears as a result of the superintegrability of the system. We show how the reduced Neumann system separates in elliptical-spherical co-ordinates. We derive the action variables and frequencies as complete hyperelliptic integrals of genus l. Finally we prove a convexity result for the image of the Casimir mapping restricted to the energy surface.Comment: 36 page

    Jet trails and Mach cones: The interaction of microquasars with the ISM

    Full text link
    A sub-set of microquasars exhibit high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the ISM must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long term dynamical evolution and the observational properties of these microquasar bow shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H{\alpha} emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of X-ray binary SAX J1712.6-3739.Comment: 33 pages, 13 figures, 1 table; Accepted to Ap

    Projection Methods: Swiss Army Knives for Solving Feasibility and Best Approximation Problems with Halfspaces

    Full text link
    We model a problem motivated by road design as a feasibility problem. Projections onto the constraint sets are obtained, and projection methods for solving the feasibility problem are studied. We present results of numerical experiments which demonstrate the efficacy of projection methods even for challenging nonconvex problems

    The Non-Linear Dependence of Flux on Black Hole Mass and Accretion Rate in Core Dominated Jets

    Full text link
    We derive the non-linear relation between the core flux F_{nu} of accretion powered jets at a given frequency and the mass M of the central compact object. For scale invariant jet models, the mathematical structure of the equations describing the synchrotron emission from jets enables us to cancel out the model dependent complications of jet dynamics, retaining only a simple, model independent algebraic relation between F_{nu} and M. This approach allows us to derive the F_{nu}-M relation for any accretion disk scenario that provides a set of input boundary conditions for the magnetic field and the relativistic particle pressure in the jet, such as standard and advection dominated accretion flow (ADAF) disk solutions. Surprisingly, the mass dependence of F_{nu} is very similar in different accretion scenarios. For typical flat-spectrum core dominated radio jets and standard accretion scenarios we find F_{nu}~M^{17/12}. The 7-9 orders of magnitude difference in black hole mass between microquasars and AGN jets imply that AGN jets must be about 3-4 orders of magnitude more radio loud than microquasars, i.e., the ratio of radio to bolometric luminosity is much smaller in microquasars than in AGN jets. Because of the generality of these results, measurements of this F_{nu}-M dependence are a powerful probe of jet and accretion physics. We show how our analysis can be extended to derive a similar scaling relation between the accretion rate mdot and F_{nu} for different accretion disk models. For radiatively inefficient accretion modes we find that the flat spectrum emission follows F_{nu}~(mdot*M)^{17/12}.Comment: Added key words and acknowledgements, minor editorial corrections. 6 pages, to appear in MNRAS 343, L59-L6

    Equation of State and Collective Dynamics

    Full text link
    This talk summarizes the present status of a program to quantitatively relate data from the Relativistic Heavy Ion Collider (RHIC) on collective expansion flow to the Equation of State (EOS) of hot and dense strongly interacting matter, including the quark-gluon plasma and the quark-hadron phase transition. The limits reached with the present state of the art and the next steps required to make further progress will both be discussed.Comment: 8 pages, 6 two-part figures. Invited talk given at the 5th International Conference on the Physics and Astrophysics of Quark-Gluon Plasma (ICPAQGP 2005), Kolkata (India), Feb 8-12, 2005. Proceedings to be published in Journal of Physics: Conference Series (Jan-E Alam et al., eds.

    Evolution of pion HBT radii from RHIC to LHC -- Predictions from ideal hydrodynamics

    Full text link
    We present hydrodynamic predictions for the charged pion HBT radii for a range of initial conditions covering those presumably reached in Pb+Pb collisions at the LHC. We study central (b=0) and semi-central (b=7fm) collisions and show the expected increase of the HBT radii and their azimuthal oscillations. The predicted trends in the oscillation amplitudes reflect a change of the final source shape from out-of-plane to in-plane deformation as the initial entropy density is increased.Comment: 6 pages, incl. 5 figures. Contribution to the CERN Theory Institute Workshop "Heavy Ion Collisions at the LHC -- Last Call for Predictions", CERN, 14 May - 8 June 2007, to appear in J. Phys.

    Dating of ice cores from Vernagtferner (Austria) with fission products and lead-210

    Get PDF
    Fission product (90Sr_ 90y, I37CS, total beta) and 2tOPb_210pO activities were measured in core samples from the temperate vernagtferner (3150 m altitude, Oetztal Alps, Austria). The results show that the investigated fission products are transported with water resulting from melting processes, and are sorbed on dust or dirt horizons. These products are, therefore, not suited for dating temperate glaciers. 210Pb is also transported with water and displaced from its original deposition. However, despite large fluctuations, the specific activity of 210Pb decreases with depth, and can be used to estimate accumulation rates and the age of the ice. The average annual accumulation rate amounts to about 80 cm water equivalent, and the deepest sample (81 m i. e. "" 65 m w. e.) was deposited in the beginning of this century. These results agree with data obtained from other observations on this glacier and show that the 210Pb_method is suitable to date temperate glaciers, if the ice cores cover a time interval of about 100 years (i. e. "" 4 half-lives of 210Pb). The surface activity of 210Pb was found to be 5 ± I dpm per kg of ice in agreement with other locations in the Alps and with measurements of fresh snow
    • …
    corecore